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Abstract. Ordinary least-squares regression treats the

variables asymmetrically, designating a dependent variable

and one or more independent variables. When it is not

obvious how to make this distinction, a researcher may

prefer to use orthogonal regression, which treats the

variables symmetrically. However, the usual procedure for

orthogonal regression is not equivariant. We propose a

simple modification to overcome this serious defect.

Illustrative computations are provided, and a robust

version of our method is discussed.
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Orthogonal Regression and Equivariance

1. Introduction

To use ordinary least squares, one designates a dependent

variable and one or more independent variables. This decision

implies that the random error affects only the dependent

variable. The choice of the dependent variable will usually be

crucial for parameter estimates and the outcome of hypothesis

tests. Sometimes considerations of cause and effect make it clear

which variable is dependent and which are independent. Often,

however, a researcher has no such preconception und prefers to

treat the variables symmetrically.

In that case, each variable is equally subject to the random

error. An appropriate linear model is orthogonal regression,

where the error is not measured along one axis. Instead it is

measured perpendicular to the regression plane itself, the usual

Euclidean notion of the distance from a point to a line [Morrison

(1990), chapter 8].

Despite its appealing symmetry, this method has a major

disadvantage: the coefficients in an orthogonal regression are

not equivariant; they change in a complicated way when a variable

is rescaled. A choice of units can make a single variable

dominate the regression. Moreover, "standardization" begs the

question of equivariance since it is just one of many ways to

transform the variables into dimensionless numbers. Each such

transformation produces a different orthogonal regression, and

the relationships among the various regressions are not

straightforward [Malinvaud (1966), chapter 1].

This lack of equivariance is evidently unsatisfactory. To
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some extent, it explains the popularity of ordinary least

squares, where the regression coefficients adjust in an obvious

and harmless way when any variable is rescaled [Morrison (1990),

chapter 3].

We now propose a simple modification which makes orthogonal

regression equivariant. This result is discussed in section 2,

where a robust version is also described. Illustrative

computations are provided in section 3.

2. A least-squares solution

Suppose that a data matrix X contains n joint observations on

K variables (n > K). For convenience, all the variables are

measured as deviations from their sample means. In the matrix

equation

Xb = u , (1)

b is a column vector of K regression coefficients and u is a

column vector of n residuals. Orthogonal regression selects

b to minimize the residual sum of squares

b'X'Xb = u'u . (2)

A normalization is imposed to avoid the trivial solution b =

0. Conventionally, b is constrained to lie on the unit sphere:

b'b = 1 . (3)

It then follows that b is the eigenvector corresponding to

the smallest eigenvalue of X'X. However, we have emphasized that

this solution lacks equivariance. Let us instead adopt the

normalization

b'e = 1 , (4)

where e is a column vector of K units. Accordingly, the sum of

the regression coefficients is one. The Lagrangian expression
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b'X'Xb -2L(b'e -1)

has a unique minimum at

L = 1/e'(X'X)-le

and b = L(X'X)-le .

(5)

(6)

(7)

-3-

Equations (6) and (7) are the modified orthogonal regression

which we propose; Raj [(1968), 16-17] has called this solution

the "best weight function." Any computer software that handles

matrices can easily calculate L and b. In fact, many statistical

programs compute and display (X'X)-1. We remark that the Lagrange

multiplier L equals the minimum sum of squared residuals.

The coefficient vector b is equivariant in the following

sense. Suppose that each observation on the first X variable is

multiplied by a positive constant c. This rescaling means that

the first row of X'X is multiplied by c; then the first column of

X'X is multiplied by c. Consequently, the first row of (X'X)-1 is

multiplied by l/c; then the first column of (X'X)-1 is multiplied

by 1/c.

If we now replace the first element of e by c, the

normalization (4) becomes

cb1 + b2 + + bK = 1 . (8)

Then the rescaling has no effect on L in equation (6). In

equation (7), b1 is divided by c; but no other coefficient is

altered. In summary, the rescaling affects our modified

orthogonal regression just as it affects ordinary least squares.

Of course, it would usually be pointless to rescale an X

variable and then nullify the effect by renormalizing, as in

equation (8). Our intention is merely to show that the choice of

units for an X variable is not a substantive decision, as indeed
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it should not be. We remark that Srinivasan (1976) uses a

normalization like (8) in the context of ordinal regression.

If the X variables are not'measured as deviations from the

sample means, the model may require an intercept. It is computed

as usual by passing the plane through the point of sample means

[Malinvaud (1966), chapter 1].

When the X matrix may be contaminated by "outliers," a robust

version of equations (6) and (7) can be calculated by the linear

program

Maximize L subject to

EXikDi + L = 0 for k = 1, ... , K (9)

and -1 .. Di 5_ 1 for i = 1, ... , n .

In (9), the summation over i runs from 1 to n. L is again the

Lagrange multiplier for normalization (4). At the optimum, L

equals the minimum sum of the absolute value of the residuals,

Eluil. The residuals themselves are listed as "reduced costs." A

variable Di = +1 or -1 if the corresponding observation i lies

above or below the regression plane; if the observation i lies

right on the plane, then -1 < Di < 1.

There are K constraints like (9), and the linear program

reports a "dual variable" for each of them. These dual variables

are the regression coefficients. To accommodate an intercept, the

linear program may include constraint K+1: EDi = 0. The solution

by linear programming is related to (6) and (7) as a median is

related to a mean, and this accounts for the robustness in the

presence of outliers [Wagner (1959), Dodge (1987)].
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3. Illustrative calculations

To illustrate equations (6), (7) and (8), we use some

hypothetical data involving fifteen observations on five

variables (n = 15, K = 5). The matrix X is:

1.2489 -1.2233 1.1348 -1.2265 .6205

.2365 .5172 .1794 .3618 .4656

-.3627 -.1500 -.2840 -.1923 -.3981

1.5916 1.8516 1.3597 1.7249 2.1422

.8176 .9119 .7665 .5742 1.0170

-2.3717 .1574 -2.1992 .0626 -2.0325

-.1758 .4104 -.2686 .1748 -.0274

-.2694 -2.1325 -.5668 -1.7472 -1.0196

.2092 1.1412 .5606 .9642 .5874

-.0537 1.8174 .2053 2.0861 .6575

-1.3818 -2.0502 -1.5132 -2.5885 -1.9695

-.1127 -1.2723 -.0885 -.9694 -.5930

-.6340 -1.0411 -.6080 -.5150 -.9685

.6595 .1888 .8501 .5806 .6420

.5984 .8735 .4719 .7098 .8765

So X'X =

13.8410 6.8952 13.2048 7.0396 14.8079

6.8952 23.0972 8.1500 21.9393 14.8312

13.2048 8.1500 13.0358 8.4323 14.6932

7.0396 21.9393 8.4323 22.0924 14.5169

14.8079 14.8312 14.6932 14.5169 18.6808
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For (X'X)-1 we have

109.3468 39.5861 -15.4423 2.7907 -108.1284

39.5861 15.8313 -4.1247 -.0300 -40.6805

-15.4423 -4.1247 5.1410 -.9884 12.2400

2.7907 -.0300 -.9884 1.0017 -2.1892

-108.1284 -40.6805 12.2400 -2.1892 110.1363

In equation (6), the Lagrange multiplier is the reciprocal of

the sum of the elements of (X'X)-1. For our example, L = 0.1329.

In equation (7)., b contains the five row sums of WX)-11 each

row sum having been multiplied by L:

b = (3.7420, 1.4065, -.4219, .0777, -3.8043)' . (10)

or 3.7420X1 +1.4065X2 -.4219X3 +.0777X4 -3.8043X5 = 0 .

Of course, any variable may be expressed in terms of the others;

for example:

X2 = -2.6605X1 +0.3000X3 -.0552X4 +2.7048X5 .

To illustrate equivariance, we multiply each observation on

the first variable by ten. The new X'X =

1384.0992 68.9524 132.0475 70.3956 148.0793

68.9524 23.0972 8.1500 21.9393 14.8312

132.0475 8.1500 13.0358 8.4323 14.6932

70.3956 21.9393 8.4323 22.0924 14.5169

148.0793 14.8312 14.6932 14.5169 18.6808

Accordingly, the new (X'X)-1 is:

1.0935 3.9586 -1.5442 .2791 -10.8128

3.9586 15.8313 -4.1247 -.0300 -40.6805

-1.5442 -4.1247 5.1410 -.9884 12.2400

.2791 -.0300 -.9884 1.0017 -2.1892

-10.8128 -40.6805 12.2400 -2.1892 110.1363
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In equations (6) and (7), we replace the unit vector e by

(10, 1, 1, 1, 1)' and again obtain L = .1329. The regression

coefficients are

b = (.3742, 1.4065, -.4219, .0777, -3.8043)' . (11)

A comparison of (10) and (11) shows that the first

coefficient has been divided by the scale factor of ten, but the

other coefficients are unchanged. These results may also be

compared with the coefficients in the usual orthogonal regression

obtained from the smallest eigenvalue of X'X. Before the first

variable is rescaled by ten, the eigenvector containing the

regression coefficients is

(.6804, .2518, -.0868, .0149, -.6826) . (12)

After the first variable is rescaled by ten, the eigenvector

is

(.0913, .3445, -.1056, .0170, -.9282) . (13)

The two eigenvectors, (12) and (13), are not related to one

another by a straightforward transformation. On the other hand,

the relationship between (10) and (11) is transparent.

The linear program for the robust orthogonal regression is

shown below. An intercept (BO) has been included. The regression

coefficients are not very different from (10), nor do there

appear to be exceptionally large residuals in the column labeled

REDUCED COST. It is therefore unlikely that the X matrix is

contaminated by stray observations.

In conclusion, our modified orthogonal regression allows a

researcher to explore a symmetric, equiwriant and robust linear

relationship among a set of variables.
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Linear program for robust orthogonal regression

Maximize L subject to:

1.2489*D1+.2365*D2-.3627*D3+1.5916*D4+.8176*D5-2.3717*D6-.1758*D7-

.2694*D8+.2092*D9-.0537*D10-1.3818*D11-.1127*D12-.634*D13+.6595*D14+

. 5984*D15+L=0

-1.2233*D1+.5172*D2-.15*D3+1.8516*D4+.9119*D5+.1574*D6+.4104*D7-

2.1325*D8+1.1412*D9+1.8174*D10-2.0502*D11-1.2723*D12-1.0411*D13+

. 1888*D14+.8735*D15+L=0

1.1348*D1+.1794*D2-.284*D3+1.3597*D4+.7665*D5-2.1992*D6-.2686*D7-

.5668*D8+.5606*D9+.2053*D10-1.5132*D11-.0885*D12-.608*D13+.8501*D14+

.4719*D15+L=0

-1.2265*D1+.3618*D2-.1923*D3+1.7249*D4+.5742*D5+.0626*D6+.1748*D7-

1.7472*D8+.9642*D9+2.0861*D10-2.5885*D11-.9694*D12-.515*D13+.5806*

D14+.7098*D15+L=0

.6205*D1+.4656*D2-.3981*D3+2.1422*D4+1.017*D5-2.0325*D6-.0274*D7-

1.0196*D8+.5874*D9+.6575*D10-1.9695*D11-.593*D12-.9685*D13+.642*D14+

. 8765*D15+L=0

(D1+..+D15)=0
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1>=D1>=-1 REDUCED

1>=D2>=-1 VARIABLE COST BI 3.6788988

1>=D3>=-1 D1 -1.0000000 -.002865 B2 1.3488624

1>=D4>=-1 D2 1.0000000 .201251 B3 -.41810227

1>=D5>=-1 D3 -1.0000000 -.043831 B4 .12282872

1>=D6>=-1 D4 -.44177346 .000000 B5 -3.7324877

1>=D7>=-1 D5 1.0000000 -.191481 BO -.00052750

1>=D8>=-1 D6 -.69180276 .000000

1>=D9>=-1 D7 -1.0000000 -.142338

1>=D10>=-1 D8 1.0000000 .040054

1>=D11>=-1 D9 .69571016 .000000

1>=D12>=-1 D10 1.0000000 .030376

1>=D13>=-1 D11 1.0000000 .183603

1>=D14>=-1 D12 .66671341 .000000

1>=D15>=-1 D13 -1.0000000 -.068614

D14 -.22884735 .000000

D15 1.0000000 .002487

L .90689890 .000000

1 1
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